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Abstract: Approximately 25% of the 82 new class I Oort cloud comets have an

anomalous distribution of orbital elements that can best be understood if there exists a

bound perturber in the outer Oort cloud. Statistically significant correlated anomalies

include aphelia directions, energies, perihelion distances and signatures of the angular

momentum change due to the Galaxy. The perturber, acting in concert with the galactic

tide, causes these comets to enter the loss cylinder - an interval of Oort cloud comet

perihelion distances in the planetary region which is emptied by interactions with Saturn

and Jupiter. More concisely, the impulse serves to smear the loss cylinder boundary inward

along the track of the perturber. Thus it is easier for the galactic tide to make these comets

observable. A smaller number of comets are directly injected by the impulsive mechanism.

We estimate that the perturber-comet interactions take place at a mean distance of ≈ 25000

AU. The putative brown dwarf would have a mass of 3 ×

÷ 2MJupiter and an orbit whose

normal direction is within 5◦ of the galactic midplane. This object would not have been

detected in the IRAS database, but will be detectable in the next generation of planet/brown

dwarf searches, including SIRTF. It is also possible that its radio emissions would make it

distinguishable in sensitive radio telescopes such as the VLA.

Published in th journal Icarus 141 354-366, (1999).
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1. INTRODUCTION

Dominance of the galactic tide in making Oort cloud comets observable has been firmly established.

Beginning with the work of Byl (1983), a succession of studies has demonstrated that the distribution

of orbital elements correlates well with the predictions of a theory that the adiabatic galactic disk

tide is predominantly responsible for changing comet perihelia and bringing them into the observable

zone. This is true during the present epoch and is likely to be true when averaged over long timescales

(Heisler 1990). Matese and Whitman (1992) summarize early contributions, Wiegert and Tremaine

(1999) include more recent work.

The outer Oort cloud is formally defined as the interval of original cometary semimajor axes

≥ 104AU (Oort 1950). It has been shown that the vast majority of these comets are first time entrants

into the inner planetary region (Fernandez 1981) and are therefore commonly refered to as new.

We denote the original value of semimajor axis, prior to perturbation by the planets, as A. More

conveniently we discuss scaled original orbital energies x ≡ 106AU/A so that the range of interest is

x ≤ 100. Accurate determination of the original energies of near-parabolic comets is made more difficult

by observational uncertainties and outgassing. However these effects do not substantively influence the

determination of other orbital elements. The data we consider consists of those 82 new comets whose

original energies have been calculated with sufficient accuracy to be deemed class I by Marsden and

Williams (1996). Young comets with x > 100 provide only indirect evidence about the outer Oort

cloud. New comets with less accurately known energies (class II) are less likely to be truly first time

entrants from the outer Oort cloud and are omitted since they could bias the analysis.

Our analysis is based on the data listed in Table 1. It contains the relevant orbital elements of

all 82 new class I comets. All angles refer to the galactic coordinate system and include the latitude,

B, and longitude, L, of aphelia as well as an orientation coordinate of the angular momentum vector

discussed below. They were obtained by us using standard transformations from ecliptic coordinates

(Marsden and Williams 1996) to galactic coordinates. The scaled energy and perihelion distance are

also listed.

In Fig. 1 we show the scatter in aphelia directions. We identify an anomalously abundant ”great

circle” of comet aphelia centered on galactic longitude 135◦ (315◦) ±15◦. A histogram summarizing the

galactic longitude distribution is shown in Fig. 2.

The fundamental question to be addressed is whether it is possible to identify dynamical signatures

from the data.

Mechanisms considered include impulsive events from Oort-cloud-penetrating stars, tidal impulses

from Oort-cloud-grazing molecular clouds, the adiabatic galactic interaction (both disk and core

tides), and impulses from a putative bound perturber. In contrast to these dynamical options there

is the chance that small-number statistics and observational selection effects preclude the possibility

of identifying dynamical effects. Aphelia directional distributions in ecliptic, equatorial and galactic

coordinates have been studied (Matese et al. 1998), and it was concluded there that asymmetries in the

observed distributions are unlikely to be entirely attributable to non-dynamical explanations.

In the next section we outline the dynamics of the relevant mechanisms. Following that we present

in Section 3 several questions which could be raised when considering various features of the data. A

statistical analysis emphasizing the significance of the correlations found is then given in Section 4. We

end with a summary of our conclusions.
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Fig. 1.— Scatter of aphelia directions of 82 new class I comets in galactic coordinates.
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Fig. 2.— Histogram of the aphelia longitude distribution of 82 new class I comets in galactic coordinates.

A random distribution would be uniform in L.
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2. DYNAMICAL MECHANISMS

2.1. Stellar Impulse

In a strong stellar perturbation of the Oort cloud, impulses to both the Sun and the comets must

be considered. The relative velocity will be typical of field stars. It has been shown (Weissman 1996)

that in this case of a heavy shower, the distribution in aphelia directions will be nearly isotropic.

Conversely, in a weak stellar perturbation of the Oort cloud we need only consider comet perturbations

(Biermann et al. 1983) along an aphelia track that is relatively narrow and extends < 180◦ across the

sky.

2.2. Molecular Cloud Impulse

If the perturbation is due to a massive external perturber such as a molecular cloud, the tidal

(differential) impulse on the comet-Sun system is appropriate. The anisotropic change in angular

momentum is then given by (Bailey 1986)

∆H ≈ −GMmcR
2 (n̂U sin 2γU + 2n̂b sin 2γb)

Umcbmc
2 . (1)

Here Umc is the relative velocity between the cloud and the Sun, and bmc is the impact parameter.

γU [b] is the angle between the comet position vector R and Umc [bmc]. The unit vectors are in the

directions of R×Umc [R× bmc].

2.3. Adiabatic Galactic Tide

The dynamics of the adiabatic galactic tide acting on near-parabolic Oort cloud comets is most

simply given in a Newtonian framework (Matese and Whitmire 1996). It describes how the angular

momentum and the perihelion distance (H ≈
√

2GM�q, H ⊥ q) are changed by the galactic tide. Let

F be the adiabatic galactic tidal force acting on a comet separated from the Sun by R = X + Y + Z.

Here X points to the galactic core and Z points to the NGP. In the conventional approximation, at

the solar location the galactic potential is taken to be azimuthally symmetric and the velocity curve

is radially flat. The tidal force in a frame co-orbiting with the local matter (but with fixed axes) can

then be modeled as (Heisler and Tremaine 1986) F = Ω◦
2X − Ω◦

2Y − Ωz
2Z where Ω◦ ≡ 2π/240Myr

is the solar orbital frequency about the galactic core and Ωz =
√

4πG〈ρ〉 is the nominal solar angular

oscillation frequency about the galactic midplane. Here 〈ρ〉 is the azimuthal average of the local disk

density (see Matese et al. (1995) for a discussion of modulated tidal forces due to time dependence in

〈ρ〉). The galactic tidal torque on the comet-Sun system is τ = Ḣ = R× F.

For near-parabolic comets, R ≈ RQ̂, with cartesian aphelia unit vector components (more precisely

antipodal directions to the observed perihelia vectors)

Q̂ ≈ Q

2A
= (cosB cosL, cosB sin L, sin B). (2)

Secularly obtaining the change in angular momentum over an orbit period, PA, we have

∆Htide = ḢPA =
5

2
PAA2Ωz

2 cosB
[

φ̂ sin B (1 + ε cos 2L) + θ̂ε sin 2L
]

(3)
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where φ̂, θ̂ are the conventional spherical unit vectors in a system of coordinates with radial direction

Q̂. The visible values are 〈ρ〉 ≈ 0.1M�pc−3 and ε ≡ Ω◦
2/Ωz

2 ≈ 0.1. Recent dynamically inferred values

(Crézé, et al. 1998) are consistent with that seen, but averages over many past independent dynamical

studies suggest some compactly distributed dark disk matter (Stothers 1998).

Both components of Ḣ are essentially constant over one orbit period

cosB ∆L ≈ ∆B ≈ Order

[

∆H

H

q

A

]

.

In contrast, because H itself is rapidly changing, any formalism which evaluates

Ḣ = H−1
(

H · Ḣ
)

= H−1
(

HφḢφ + HθḢθ

)

≡ − cosα Ḣφ − sinα Ḣθ (4)

will find Ḣ caused by the galactic tide to be changing rapidly in the course of a single orbit. This

highlights the value of the Newtonian presentation. In Table 1, the columns labeled Ḣ give the

signature of the osculating value of Eq.(4) evaluated at perihelion, and α is as defined in Eq.(4).

It is conventionally assumed that the in situ angular momentum distribution of new Oort cloud

comets of specified semimajor axis A can be adequately approximated in this case by the loss cylinder

model
d2N

dHφdHθ
∝ Θ(Hφ

2 + Hθ
2 −Hlc

2) (5)

where Θ is the unit step function and Hlc ≡
√

2GM�qlc. Here qlc ≈ 15AU is the loss cylinder boundary.

This is a statement that comets which leave the planetary region having q < qlc will likely have

experienced an energy impulse from the planets which will have removed them from the new Oort cloud

population (Fernandez 1981). Fig. 3a is a schematic illustration of how this step-function loss cylinder

must be refilled by a perturbation in order to make comets observable. It is also generally assumed that

the in situ distribution of aphelia directions is adequately represented as isotropic, independent of H

and x.

2.4. Bound perturber Impulse

We now consider the dynamics of a putative small-mass bound perturber interacting with a comet,

assuming that the solar perturbation is negligible. The impact parameter is taken to be sufficiently

small so that the radial coordinates of both the comet, R, and the perturber, r, are nearly parallel. The

perturber orbit is assumed to lie in the plane defined by the great circle. Symbol notation is as follows:

Impact parameter : b = (br, bθ, bφ)

Perturber position : r = (r, 0, 0)

Angular impact parameter : β ≡ b/r

Perturber velocity : v ≈ (vr, vθ, 0)

Perturber mass : M

Comet position : R ≡ r + b

Comet velocity : V ≈ (Vr , 0, 0)

Comet angular momentum : H ≡ R×V

Comet energy : E ≡ −GM�
2A

Relative velocity : U ≡ v −V
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The velocity impulse to the comet is

∆V = −∆U = −2GMb

Ub2
(6)

where b ⊥ U. The angular momentum impulse is then

∆Himpulse = R×∆V = r×∆V =
2GM

U

β × r̂

β2
(7)

with components

∆Hθ =
2GMβφ

Uβ2
, ∆Hφ = −2GMβθ

Uβ2
. (8)

Scaling to the change required to bring comet perihelia from the edge of the loss cylinder to the center

of the observable zone, we have

∆H

Hlc
=

∆H

(2GM�qlc)
1

2

≈ ±
(

2r

3qlc

)
1

2 1

β

M

M�

. (9)

Note that if there is an impulse which brings a comet into the observable zone, the fractional change in

energy will be substantially smaller

∆E
E ≈

Vr∆Vr

E = −4
Vr

U

A

r

M

M�

βr

β2
≈ ±

(

8

3

)
1

2 1

β

M

M�

. (10)

In the approximations for the fractional changes we have adopted the following estimates, r ≈ A,

βr ≈ βθ ≈ βφ ≈ β/
√

3, vθ ≈ Vr ≈ U/
√

2 ≈
√

GM�/r.

Impulsed comets could be moving either inward or outward at the perturbation site. Therefore it

is of interest to discuss the free fall time of a comet from R, A. We denote the mean anomaly of the

perturber orbit r, a, by m(r) = 2π
Pa

(t− τM ). The free fall time of a near-parabolic comet from R is

tff (R, A) =
PA

2π

{

π + Sgn(Ṙ)

[

π

2
− sin−1

(

R

A
− 1

)

+

(

R

A

(

2− R

A

))
1

2

]}

. (11)

Letting t = 0 ≡ the present epoch, and approximating R ≈ r, we obtain the relation for the mean

anomaly of the perturber when it impulsed a comet at a time −tff (R ≈ r, A) in the past

m(r) +
2πτM

Pa
= −PA

Pa

{

π + Sgn(Ṙ)

[

π

2
− sin−1

( r

A
− 1

)

+
( r

A

(

2− r

A

))
1

2

]}

. (12)

If we knew the complete set of orbital elements of the putative bound perturber, then Eq.(12) could be

solved to determine the locus of possible values of cometary A simultaneously seen today around the

great circle. The solution would be multivalued, i.e. at any point on the great circle we could be seeing

comets that were freely falling inward when the perturber made its most recent passage, but we could

also be seeing comets that were freely falling outwards when the perturber impulsed them on one (or

more) perturber orbits ago.

Having given an overview of the relevant dynamical relations, we now return to the data to inquire

about the implications.
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3. QUESTIONS RAISED BY THE OBSERVATIONS

3.1. Can the longitude distribution be caused by any of these mechanisms?

Of the dynamical themes discussed, we can reject the possibility that the great circle is produced

by a strong field star impulse since such a perturbation produces a near-isotropic distribution of aphelia

directions (Weissman 1996).

This does not mean that no observed new comets are attributable to a stellar impulse. Matese et al.

(1998) concluded that the secondary peak centered at 225◦ was a residual part of a weak comet shower

noted by Biermann et al. (1983). It is localized in a region (L = 180◦ − 240◦ and B = 0◦ − 30◦) that is

weakly perturbed by the galactic tide. The shower is more strongly evidenced in energies x > 100, thus

indicating that it is the temporal flux tail of a recent shower. The predicted pattern of a weak stellar

impulse shower (a narrow track extending < 180◦) is consistent with the observed Biermann shower.

Such a prediction leads us to conclude that the ≈ 270◦ great circle is not the product of a weak stellar

impulse. This is the only substantive argument against a weak stellar shower interpretation of the great

circle anomalies.

Can a molecular cloud impulse produce the great circle? The angular dependencies contained in

the expression for the angular momentum change in Eq.(1) (sin 2γ) are incapable of producing the

narrow width in the observed longitude distribution for the great circle. Therefore we also reject a

molecular cloud impulse as an explanation for the great circle.

In Fig. 2, we observe two large peaks (the great circle) and two secondary peaks in the longitude

distribution. Does the core galactic tide play a role? Matese and Whitmire (1996) suggested this

explanation. Subsequent studies (Matese et al. 1998) indicated that the appropriate quadrupolar terms

(sin 2L , cos 2L) in Eq.(3) could not produce narrow longitude peaks unless one adopted an ad hoc in

situ distribution of comet elements. The core tide as a major contributor can be rejected on this basis.

We are left with the adiabatic galactic disk tide and a putative bound perturber as potential

dynamical explanations. The very nature of the longitude concentration of aphelia along an extended

portion of a great circle suggests that it is a signature of the orbital path of a small-mass bound

perturber. But we shall see below that the latitude data bears the signature of the galactic disk tide.

3.2. Can the latitude distribution discriminate between these two options?

In Fig. 4 we show a histogram of the galactic latitude distribution, distinguished between those

comets in the great circle and those outside the great circle. It would be uniform in sin B if observed

aphelia were randomly scattered on the celestial sphere. Fig. 1 shows that the definition of what

constitutes the great circle band is somewhat arbitrary since there are some comets that visually could

be incorporated but formally are not. We remark that inclusion of these comets would reinforce the

conclusions we shall draw below.

Outside the great circle the aphelia latitude distribution exhibits signature deficiencies at the

galactic poles and equator in both hemispheres. This results from the dominant disk tide for which

∆Hφ ∝ sinB cosB. But inside the great circle, something distinctive is seen. The southern galactic

hemisphere distribution of aphelia has the prototypical shape suggesting the galactic tide - but is

overabundant by a factor of 21
30

5
1 = 3.5. The northern galactic hemisphere distribution is overabundant
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Fig. 3.— Schematic illustration of the loss cylinder in angular momentum space. (a) In the absence of

a bound perturber. (b) As smeared by a bound perturber.
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Fig. 4.— Histograms of the aphelia latitude distributions of 82 new class I comets in galactic coordinates,

separated as to inside and outside the ”great circle”. A random distribution would be uniform in sin B.
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by a more modest factor of 2 and is flatter with no clear signature of the tide, perhaps because of the

small numbers involved. The hemispherical asymmetry is, in itself, of no clear statistical significance

but it is curious.

Are either of the two dynamical mechanisms capable of explaining all of these conflicting results

while maintaining a standard model for the in situ distributions of x and H and Q? Do we have to

abandon the assumption of in situ randomized distributions? To gain more insight we now look at the

energy distribution.

3.3. Can the energy distribution help us discriminate?

In Fig. 5 we show a histogram of the energy distribution, taken from Table 1, distinguishing

comets that are in and out of the great circle. It is noticed that there is a potential correlation with

more tightly bound energies being associated with comets in the great circle. For energies x < 30 the

great circle proportion exceeds what is expected for a random distribution by a modest factor of 1.5.

But for x > 30 the proportion exceeds random by a much larger factor of 20
18

5
1 = 5.5. The statistical

significance of this observation is discussed below. We need to explain (i) a great circle longitudinal

excess which is (ii) disproportionately in tighter energies, and (iii) normal in displaying the latitude

dependence signature of the galactic disk tide.

We believe the explanation for these apparently disparate bits of information is that one should

not perceive the causal interaction to be either a bound perturber impulse or the galactic disk tide, but

both.

The galactic tidal perturbation and the impulse should be superposed in the course of a cometary

orbit. The tide changes the angular momentum from its prior value as the comet recedes from the

planetary region and, after the perturber impulse, continues to change it until the comet enters the

planetary region with its observed value

Hobserved = Hprior + ∆Hpre−impulse−tide + ∆Himpulse + ∆Hpost−impulse−tide (13)

=
(

Hprior + ∆Himpulse
)

+ ∆Hcomplete−orbit−tide. (14)

The simplest way to visualize this process is suggested by the bracketed terms in Eq.(14). Within a

tube in space swept out by the perturber’s ”sphere of influence”, all affected comets will effectively

have their prior loss cylinder distribution smeared by the amount ∆Himpulse given in Eq.(7). For these

comets the standard step function for the prior distribution of angular momentum (Fig. 3a) is changed

to a smeared distribution (Fig. 3b). The energy impulse was shown to be small, leaving the energy

distribution essentially unaffected. Depending on the semimajor axes of those comets in the tube which

are consistent with free-fall timing, Eq.(12), the outcome can roughly be categorized in one of three

ways.

If A is sufficiently large, the bound perturber impulse is irrelevant since the tidal torque would be

large enough to refill the loss cylinder anyway. No additional number of comets is made observable.

Only the physical identity of the comets made observable is changed.

If A is sufficiently small, the galactic tide is irrelevant since the tidal torque is too small to be of

significance. These observed comets can be considered to be directly injected by the perturber. This

occurs if the impact parameter b (and therefore the cross section) is small. No latitude signature of the
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Galaxy is to be expected. These comets will provide an observed population in the tightly bound outer

Oort cloud population not attributable to observational uncertainties or outgassing.

But if A is intermediate in value, the combined perturbation of the small-mass perturber and the

galactic tide must be considered. With a loss cylinder boundary smeared inwards (from the region of

impact parameters b that is not small enough for direct injection into the observable zone), a weaker

tide associated with an intermediate value of cometary semimajor axis A can be sufficient to make a

comet observable. We should expect to see the galactic signature in the latitude distribution of this

population, and we should expect to see an enhanced number of comets in the perturbed tube with

intermediate values of A.

We therefore have a potential dynamical explanation for the observations that we see (i) a great

circle longitudinal excess which is (ii) disproportionately in tighter energies, and (iii) normal in

displaying the signature latitude dependence of the galactic disk tide. Supporting evidence for this

conjecture can be found in the perihelion distance distribution.

3.4. How does the perihelion distribution support the conjecture?

In Fig. 6 we show the histogram of the perihelion distance distribution taken from Table 1. We

observe that for q < 1 AU the proportion of the in-circle and out-of-circle populations is nearly the

random expectation of 1 to 5. The excess count in the great circle is strictly in larger perihelion

distances. Why? We suggest that it is precisely because the combined effects of perturber impulse

and disk tide are still sufficiently weak for the more numerous intermediate A comets that angular

momentum changes will tend to barely enable the perihelion to move into the observable region as

indicated in Fig. 3b. The statistical significance of this data is discussed in the next section.

Matese and Whitman (1992) have showed that there was a significant increase in the tidally

produced observable comet flux when qlc was decreased. This is effectively what occurs due to the

perturber impulse.

3.5. Is there any other supportive evidence?

Consider Eqs.(3-4) showing the change in angular momentum due to the galactic tide. If the

combined effects were barely sufficient to make the comet observable, then the osculating value of

the galactic tidal Ḣ should be negative. Eq.(4) has been evaluated and its signature recorded in

Table 1. Observe that there is indeed an excess of negative values in the great circle (the statistical

significance of which is documented below), and that this excess tends to be correlated with the energy

range 30 < x < 50. We suggest that values 50 < x are either erroneous because of observational

uncertainties or outgassing, or are directly made observable by the perturber impulse. Values x < 30

may be erroneous because of observational uncertainties or outgassing, or may be dominated by the

conventional tide for which angular momentum changes are so large that ∆H is equally likely to

overshoot or undershoot the center of the loss cylinder. Further evidence that the core tide is not the

dominant dynamical mechanism here is the fact that the distribution in Ḣ is minimally changed when

we set the core parameter ε=0.
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3.6. What is the likely orbit of the perturber?

A fit of the great circle aphelia directions yields an inclination to the NGP of 88◦[92◦]± 3◦. Since

the sense of the perturber orbital motion is unknown, we adopt an inclination of i = 90◦ ± 5◦ for the

perturber orbit normal.

We can get a rough estimate of the orbit size by returning to the prediction of the locus of energies

along the great circle. For simplicity of discussion we consider a circular perturber orbit. Inserting

r = a into Eq.(12) we plot in Fig. 7 the phase of the perturber m(r = a) + 2πτM/Pa (expressed in

orbit cycles) versus the ratio of semimajor axes a/A. For a circular perturber orbit, a/A ≤ 2 if the

perturber is to intersect the comet path. A phase value of zero corresponds to the present location

of the perturber along the great circle (which is, of course, unknown). The rapidly rising part of the

curve corresponds to comets that were freely falling directly inward when they were recently perturbed

subsequent to their aphelion passage. The peak in the curve corresponds to the perturber impulsing

comets at their aphelion (r = a ≈ Q ≈ 2A) slightly earlier in time. Still earlier in time the perturber

impulsed comets on their way out to aphelion. We are simultaneously seeing comets from all phases

(perturbation sites along the great circle), each corresponding to a different comet energy. But the

situation is yet more complicated by the fact that perturbed comets with sufficiently large A could

continue on this orbit of the Sun for longer than one perturber period (when the perturber phase at

comet impulse was < −1 cycle) before entering the planetary system. Therefore at any angle along

the great circle, there corresponds a discrete set of near-parabolic cometary energies which could be

simultaneously seen. Analogous curves obtain for perturber orbits of any eccentricity and phase.

It is important to note that it would be impossible to simultaneously see comets if they were

all impulsed near their aphelia in the great circle. Simultaneously observed comets must have been

impulsed at different cometary orbital phases and must have a range of energies.

To estimate the perturber orbit radius, we take the interval 30 < x < 50 to denote the energy

range where the combined perturbation is important. Also estimating the angular arc of this region as

≈ 3/4 of a perturber orbit cycle (270◦), we find from Fig. 7 that a/A ≈ 1.00± 0.25. The range of larger

ratios is impulse dominated and that of smaller ratios is tidal dominated.

Taking 〈x〉 ≈ 40 ≈ 106AU/〈r〉 we obtain a preliminary estimate for the mean radius at the

interaction sites along the arc of ≈ 25, 000 AU. The extent of the great circle arc in Fig. 1 suggests

that the perturber orbit may be more nearly circular than parabolic, i.e. e2 < 0.5 is more likely than

e2 > 0.5. Note that the present phase of the perturber, defined as phase cycle=0, is spatially equivalent

to phase cycles -1, -2, etc.

A hypothetical illustration based on Figs. 1 and 7 is now presented. If the perturber were in a

near-polar orbit and if it was presently located at L = 315◦, B = −60◦ (≡cycle 0), moving toward the

NGP, the description of the observed perturbed comet population would be as follows. Any perturbed

comets in the prior 0.1 cycle (≈ 35◦) could not have made themselves observable today since the free

fall time is too long. A very small group of comets recently perturbed near phase -0.1 as they freely

fell inward could be observable and would be imbedded in a part of the arc at an equivalent phase of

≈ −1.1. These comets would be located near L = 135◦, B = −85◦, close to the SGP. But since the

tidal torque is so weak near the poles, we should not expect many comets in this small group to be

made observable.

Directly injected (impulse dominated) comets could be seen at phases -0.1 to -0.65, trailing the

perturber by ≈ 35◦ to 235◦ and extending up through the L = 135◦ band, beyond the NGP, terminating
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in the L = 315◦ band. Comets such as C/1959 X1, C/1898 L1, C/1987 F1, C/1976 D2 might be in this

class.

At perturber phases -0.65 to -1.45, covering an arc of ≈ 285◦, which extends from

L = 315◦, B = +65◦ to L = 135◦, B = +40◦ we have the dominant class of observed comets

from the combined tidally assisted+perturber impulse interactions. The observed comet energies would

systematically change from x = 50 to x = 30 as one proceeds along this portion of the arc. Gaps at the

equator and poles would occur because of weakened tidal torques. All of these comets would have been

perturbed at different times on their way out to aphelia but could now be simultaneously observed.

Still earlier perturber phases (< −1.45 cycles) would be associated with comets having x < 30 for

which the tide would be dominant and would produce an observed population 1/5 of that outside the

great circle. The hemispherical nonuniformity in the observed distribution along the great circle could

be due to the dynamics of free fall embodied in Eq.(12), or could be due to eccentricity in the perturber

orbit.

Unfortunately, the original energy determinations are sufficiently inaccurate due to observational

uncertainties and outgassing effects that we cannot use such an analysis as presented above to predict

the perturber location, sense of motion, or eccentricity, so we should not attempt to push this crude

picture too far. Analogous curves have been obtained for more general orbits having larger eccentricities.

3.7. What determines the width of the arc and the perturber mass?

Eq.(9) provides the information. The angular width of the observed great circle is β ≈ 0.2 radians.

We argue that the angular momentum impulse due to the perturber must be of the order of the loss

cylinder dimension, Hlc, inside the great circle tube. Inserting qlc as well as the estimate of 〈r〉 at the

interaction site, and taking ∆H/Hlc ≈ 1/2, we obtain M ≈ 0.003M�. That is, the angular width is 0.2

radians because the perturber mass is ≈ 3MJ . Taking into account the uncertainties in the parameter

estimates, we suggest a range of 3 ×

÷ 2MJ .

3.8. What limits the mean perturber radius?

Hills (1985) has shown that objects in the Oort cloud more massive than 0.01M� would refill the

loss cylinder due to direct impulses. If the perturber mass was close to 0.01M�, and it was in an orbit

which could perturb comets with A ≤ 30000 AU, the signal would be sufficiently strong as to dominate

the galactic tide. This is true independent of perturber eccentricity and inclination. But if the mass is

closer to 0.003M�, then we are on the borderline of detectability since the cross section is ∝M 2.

We have demonstrated that objects down to 0.003M� could partially refill the observable part of

the loss cylinder, and would be more effective with the aid of the galactic tide. The assistance of the

galactic tide requires A ≥ 20000 AU. If the perturber mass was as little as 0.003M�, and it was in an

orbit which could perturb comets with A ≤ 20000 AU, the loss cylinder would be partly refilled with

directly injected comets. Since the in situ flux of comets increases approximately as A−5/2 we would

see a large number of directly injected comets with A ≈ 10000 AU. The absence of such an observed

population suggests a lower limit for 〈r〉.

Conversely if the perturber was in an orbit which could perturb comets with A > 30000 AU, the
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galactic tide would not need the assistance of the impulse since it would already completely refill the

loss cylinder. This suggests an upper limit for 〈r〉. Thus we have estimated the mean perturber radius

over the ≈ 270◦ arc to be ≈ 25000± 5000 AU.

3.9. What explains the amount of excess in the great circle?

The in situ flux of new comets, differential in energy and angular momentum is represented by

d3Ṅ(in situ)

dHdx
=

1

PA

dP
dH

dN

dx
(15)

where
dP
dH

=
Θ(H −Hlc)

π
(

Hmax
2 −Hlc

2
) ≈ Θ(H −Hlc)

πGM�A
(16)

is the in situ angular momentum probability density and dN
dx is the in situ energy number density. The

differential flux of comets impulsed by the perturber is

d3Ṅ(impulsed)

dHdx
=

∫

dHo

dP
dHo

dΣ(Ho → H)

dH
U

dn

dx
(17)

where dΣ(Ho→H)
dH is the differential cross section for impulsing comets Ho into H = Ho + ∆Himpulse.

The in situ energy density per unit volume is

dn

dx
=

1

2πR2PAVr

dN

dx
. (18)

Comparing Eqs.(15) and (17) we can contrast the conventional loss cylinder distribution with the

impulse-smeared distribution within the great circle tube of cross section Σ ≈ πb2,

Θ(H −Hlc)←→
∫

Ho>Hlc

dHo

dΣ(Ho → H)

dH

U

2πR2Vr
. (19)

Both the in situ and impulsed flux are assumed to have a power law energy distribution
1

APA

dN
dx ∝ xk where k ≈ 2.5 − 4.5 (Bailey 1986). The galactic disk tide is assumed to refill the loss

cylinder for x < 30 whereas the combined perturber plus tidal interaction is assumed to partially refill

the loss cylinder for 30 < x < 50. Therefore our estimate for the energy integrated ratio is

Ṅ(perturber assisted)

Ṅ(tide alone)
≈ πb2U

2πR2Vr

50k+1 − 30k+1

30k+1
. (20)

Setting b/R = β = 0.2, U =
√

2Vr, k = 3.5 we obtain a ratio of 0.25.

Of the 82 new class I comets, Matese et al. (1998) estimate that < 10% are associated with the

temporal tail of the Biermann shower. For the 20 excess comets in the great circle, we now estimate

that ≤ 5 would be tightly bound comets directly injected into the observable zone by the perturber.

Therefore the comparable ”observed” ratio would be ≈ 20/62 = 0.32 which is in reasonable agreement

with the theoretical estimate.
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3.10. Is the great circle excess seen in other energy populations?

No it is not (Matese et al. 1998). The great circle overpopulation is absent in both the new

class II and the young (100 < x < 1000) populations. This presents a difficulty with most dynamical

explanations of the great circle. If we were observing the onset of a weak stellar shower, one could

explain the absence of a significant associated young overpopulation as being due to a lack of time for

the planets to process the new population into a young one. This is the other extreme of the scenario

used to explain the Biermann shower. But as we have argued, a weak stellar shower will be seen along

a celestial arc extending < 180◦ and could not explain the observed arc of ≈ 270◦.

We suggest that the fading of comets may play a role here. Young comets are less likely to be

found at large perihelion distances than are new comets (Wiegert and Tremaine 1999). Since new class

I great circle comets preferentially have large perihelia, they are more susceptible to fading from view

on subsequent passages through the planetary region and would be less likely to subsequently appear

in the young population. If the present conjecture is found to be correct, significant insights into the

fading problem are possible.

3.11. Why is the orbit near-polar?

Perhaps it is because we would not have noted the signal in longitude distributions if the orbit

was oriented otherwise. Matese et al. (1998) did analyze longitude distributions in ecliptic and

equatorial coordinates as well as in galactic coordinates and could have detected anomalous great circle

concentrations in any of these frames. Concentrations in longitudinal distributions of the amount seen

here would likely be noticed if the great circle were inclined by as much as 10◦. The probability that

a randomly aligned great circle passes within 10◦ of the poles is sin(10◦)=0.17. Taking account of the

fact that analogously oriented anomalous concentrations would have been seen in either ecliptic and

equatorial coordinates, we are not unusually fortunate to have such an orbit orientation. We do not

claim that the perturber has been in this orbit for any extended amount of time. Any orbit in the outer

Oort cloud is liable to be substantively perturbed over hundred-Myr timescales (Hills 1985).

The galactic tide does provide a mechanism for correlating near-circular and near-polar orbits. The

galactic tide will change the angular momentum of the perturber orbit as well as that of comet orbits.

The z component of the perturber angular momentum, Hz = H cos i, is nearly conserved with the core

galactic tide imparting an oscillation of small amplitude. If we neglect this effect, invariant (stable)

orbits under the galactic disk tide fall into two classes (labeled ”case (a)” and ”case (e)” in Matese and

Whitman (1989)). Neither stable orbit family includes a polar orbit (see also Breiter et al. (1996) who

gave an extended discussion of possible orbital characteristics).

In fact, a circular orbit through the galactic poles is an unstable equilibrium configuration (”case

(c)” in Matese and Whitman, also discussed in Breiter et al.). This is not a serious objection to the

present conjectured orbit. Under the action of the galactic tide, such an orbit would undergo periodic

osculations of period PH ∝ Pz
2/Pa where Pz ≈ 60−90 Myr is the nominal solar oscillation period about

the galactic midplane. Osculation periods exceeding hundreds of Myr are likely. Using the analysis

presented there, we find that the predicted maximum eccentricity is related to the present elements by

1− emax
2 =

5

4
(1− e2)cos2i (21)

from which we determine .995 < emax < 1 and qmin < 125 AU for the perturber orbit.
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That is, under the action of the galactic tide (and assuming no intervening impulses to the

perturber, an unlikely event) the perturber would pass relatively close to the planetary zone every

several hundred Myr, comparable to the timescales for strong field star impulses to the Oort cloud

which would randomize their orbital parameters and substantively affect the perturber orbit. Hills

(1985) has determined that objects of mass < 10MJ would not damage planetary orbits even if they

had passed through the planetary system.

Further, in the course of a single osculation, the orbit will spend more time in the near-polar

crossing, near-circular configuration than in its alternative extreme of a near-parabolic orbit. This is

analogous (mathematically and figuratively) to a simple pendulum that can nearly reach its unstable

equilibrium point. In the course of its oscillations, the pendulum will spend significantly more time

near the unstable vertically-up orientation, than near the stable vertically-down orientation.

Conceivably there are several jovian mass objects in the Oort cloud but this perturber is the one

we are most likely to observe. Somewhat smaller objects could presently exist but they would not leave

a notable imprint on comet distributions.

3.12. What is the likely origin of the perturber?

Extrasolar planets with masses ∼ 3MJ have been detected around several solar type stars at

distances less than 5 AU (Fischer et al. 1999). In cases where there is significant eccentricity it has

been suggested that these objects are brown dwarfs and therefore formed like stars rather than planets.

Alternatively, the eccentricity could be the result of interactions between two massive extrasolar planets,

in which case the less massive object would currently have a much larger orbit or would have been

ejected from the system. The Oort cloud perturber under consideration here probably did not form

like a jovian planet in the solar protoplanetary nebula since there is no mechanism for it to evolve by

interactions with the known planets to its current outer Oort cloud orbit.

It is more likely that if a bound Oort cloud perturber exists it formed in a manner similar to the

secondaries in wide binary systems. Hartigan et al. (1994) studied PMS wide binaries with projected

separations between 400-6000 AU. They found that in 1/3 of the systems studied the secondary was

systematically younger that the primary. This could be explained by capture if the less massive stars

formed later than the more massive stars in the Taurus star forming complex studied. Alternatively the

less massive star forms from a fragment independent of the primary (Pringle 1989). In this picture the

secondary would accrete material more slowly than the more massive primary, and therefore appear

the younger of the pair (Hartigan et al. 1994). The Oort cloud perturber could have accreted at a few

thousand AU and subsequently evolved to its current mean distance of 25000 AU as the result of stellar

impulses over 4.5 Gyr. The minimum brown dwarf mass based on Jeans instability considerations is

∼ 7MJ (Bodenheimer 1996). This is reasonably compatible with our nominal Oort cloud perturber

mass estimate of 3 ×

÷ 2 MJ .

3.13. Is this brown dwarf observable?

The bolometric luminosity of a 3MJ jovian planet or brown dwarf is ∼ 6× 10−9L� if it is 5 Gyr

old. Its effective temperature is ≈ 130K, but its spectrum is orders of magnitude different than that of

a black body in the wavelength range 1 - 10 µm (Burrows et al. 1997). Such an object at ≈ 25000AU
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would not have been observed by the IRAS survey but will easily be within the detection limits of

SIRTF IR bands (Burrows et al. 1997). Depending on its mass, the perturber would also be within the

detection limits of ISO and Gemini/SOFIA bands. It is also possible that its radio emissions would

make it distinguishable in sensitive radio telescopes such as the VLA (Dulk et al. 1997). The perturber

parallax angle would be ≈ 9 arcsec, significantly greater than its proper motion of ≈ 0.3 arcsec.

4. Statistical Analysis

We now discuss the statistical significance of the observations made in Section 3. The basic

approach we take is to investigate hypothesized models of the distributions of the orbital elements and

to compare them with observations. Subjecting the comparisons to statistical tests we can determine

p-values, or significance levels. If 0.05 < p, the observations are said to be consistent with the model

and the hypothesis is regarded as reasonable. Values 0.01 < p < 0.05 imply that there is some evidence

against the assumed model, while p < 0.01 suggests that there is strong evidence against the model

(McPherson 1990). Interpretational ambiguities can occur when different tests yield substantively

different significance levels.

4.1. Does the galactic tide really dominate?

The data conventionally refered to as evidence that the galactic tide dominates in making Oort

cloud comets observable during the present epoch includes the latitude distribution illustrated in Figs.

(1) and (4). This has been supported by analysis, and we review and augment those claims here.

Predicted distributions of all orbital elements in a galactic tidal model have been obtained (Matese

and Whitman 1992) and are in good agreement with recently obtained results (Wiegert and Tremaine

1999).

A comparison of the observed distributions of all angular orbital elements to a hypothesized

random distribution using a Kolmogorov-Smirnov test of cumulative distributions has been performed

(Matese and Whitman 1992). It was found that one could reject the hypothesis that the observed

latitude distribution was a sample from a random distribution at a significance level p < 0.05. The

significance level for rejecting the hypothesis that the observed latitude distribution was sampled from

a random in situ population made observable by the galactic tide was only minimally larger even

though the observed distribution visually favors the | sinB cosB| profile over a random profile. This

is likely to be a reflection of the inability of the cumulative K-S test to adequately discriminate here.

The hypothesis that the observed distributions were samples from a random distribution did fail the

K-S test at the level p ≤ 0.05 for more independent dynamical variables than did the corresponding

comparison with the galactic hypothesis.

In a χ2-test of binned distributions (Matese et al. 1998) it was found that the hypothesis of a

random distribution in both galactic latitude and longitude could be rejected at a significance level

p < 0.001. When the tests were performed in ecliptic and equatorial coordinates it is found that p > 0.05

in all cases. The appropriate interpretation of these results is that there is suggestive evidence to reject

the hypothesis of an observed random distribution of aphelia directions and that any non-randomness

is correlated in a way that points to the galactic coordinate system. Observational selection effects,

stellar showers, and measurement errors were rejected as potential explanations for these results.
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The strongest evidence that the galactic tide dominates today is the association between variables

that is predicted by galactic tidal theory. We present statistical evidence for that here. In Eqs.(3-4) we

see that perihelia distances will be decreased if 〈Ḣ〉 < 0 when averaged over an orbit

∆
√

q =
√

q −√qprior ∝ PA〈Ḣ〉 ∝ A7/2Sgn(〈Ḣ〉). (22)

In the galactic tidal model, decreases in q are smallest for small negative 〈Ḣ〉. Theoretically, small

〈Ḣ〉 correlates with small A (large x), and small negative 〈Ḣ〉 correlates with a negative observed (i.e.

osculating) value of Ḣ . Thus if x is large, the tide is weakened and large-x comets that are just barely

made observable should have large q and an osculating value of Sgn(Ḣ) = −1. Therefore galactic

tidal theory predicts that there should be a correlation between q − x and anti-correlations between

q − Sgn(Ḣ) and x− Sgn(Ḣ). This is clear from the theoretical analysis and has been verified in model

Monte-Carlo calculations including the galactic tide. They apply whether or not there exists a bound

perturber partially aiding the galactic tide. The Monte-Carlo correlation results have been found to

become more significant when one reduces the loss cylinder perihelion distance from the nominal value

of 15 AU, moving it closer to the observed zone.

We have performed a conventional Kendall rank correlation test on these variables (Mathematica

1996, McPherson 1990). The N = 82 values of q, x and Sgn(Ḣ) in Table 1 are separately ranked from

smallest to largest with ties treated in the prescribed fashion. We use the conservative Kendall ranking

procedure rather than the more common Pearson test (which directly uses values in the correlation

analysis) so that unreliably extreme values of x do not unduly bias the results. Values of q and Sgn(Ḣ)

are accurately known. Kendall’s correlation coefficient, τ , is approximately normally distributed with

zero expectation value and variance 4N+10
9N(N−1) = (0.0752)2 if the two variables have no correlation.

The results are τ(q, x) = 0.171, τ(q, Sgn(Ḣ)) = −0.133 and τ(x, Sgn(Ḣ)) = −0.081. The

corresponding one-sided p-values are, respectively, p= 0.011, 0.039, and 0.14. That is, if q and x were

truly unassociated, the probability that they would be positively correlated at this level or greater is

0.011, so we have some evidence that we can reject the hypothesis that the observed orbital elements are

unassociated as is assumed in a random distribution model. Conversely we cannot reject the hypothesis

of the galactic tidal model, which predicts such associations.

Further, the probability that all three correlations/anti-correlations predicted by the galactic tidal

model would simultaneously occur at this level or greater if the elements were mutually unassociated is

obtained in the Fisher method by evaluating

χ2 = −2 ln[p(q, x) p(q, Sgn(Ḣ)) p(x, Sgn(Ḣ))] = 19.4 (23)

which is distributed like a χ2 distribution with 3 × 2 degrees of freedom. The convolved p-value is

pcombined = 0.0035. The significance level of this correlation result is the best evidence that today

Oort cloud comets are predominantly made observable by the galactic tide. It is essential that these

correlations be firmly established before we discuss whether the great circle sample is anomalous.

4.2. Is the overpopulation of the perceived great circle significant?

If we randomly scatter 82 points on a the celestial sphere, the probability that we would find ≥ 30

points in a single pre-chosen region of solid angle 4π/6 steradians is found to be 1.1×10−5. But a priori

we have no basis for choosing either the width, inclination or phasing of the region. It is evident from
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Fig. 1 that the properties of the great circle band discussed here will nearly optimize this statistic, so

that it must be appropriately interpreted. In Sections (3.7-3.9) we see that the size and overpopulation

of the band is largely determined by the mean radius at perturbation and the mass of the perturber,

which we estimate to be 〈r〉 ≈ 25000 AU and M ≈ 0.003M�. The unknown orientation of the

perturber plane is inferred from the orientation of the perceived great circle of comet aphelia. Should

the conjectured perturber be discovered with the inferred properties, the statistical and dynamical

arguments presented would leave little doubt that it was the cause of the modest overpopulation.

An anonymous referee has scattered 82 points on the celestial sphere having a probability

distribution ∝ | sinB cosB|, and finds that an arbitrarily phased and inclined great circular band of

4π/6 steradians containing ≥ 30 points occurs with probability 0.025. This is not small enough to

convincingly argue that we have strong evidence to reject the hypothesis that the observed population

is a sample from a distribution predicted by the conventional longitudinally symmetric galactic disk

model, absent any additional dynamical mechanism. The conclusion is reasonable, but standard

interpretations indicate that there is some evidence for rejecting this hypothesis, which justifies further

investigation.

If the only observation was a great circle band consistent in size and overpopulation with the

conjectured perturber, the present hypothesis would not be solidly based. But that is not the case as

we now show.

4.3. Correlations of orbital parameters with longitude

In Sec. (4.1) we found that the mutual correlations, large x - large q - negative Sgn(Ḣ), are

predicted by galactic tidal model calculations and that these predicted correlations increase when the

separation between the loss cylinder and the observable zone boundaries is reduced. When the loss

cylinder boundary is effectively reduced because of smearing due to a perturber, proportionally more

comets would be observed with intermediate values of A (30 < x < 50) since the reduced interval

between the boundaries enables intermediate-A comets to be made observable by the galactic disk tide.

This in turn would cause an even tighter association between large x, large q and negative Sgn(Ḣ).

Therefore when we perform a Kendall rank correlation test between x, q, Sgn(Ḣ) and galactic

longitude L, we test the present perturber hypothesis.

For all 82 comets in Table 1 we have assigned a rank of IL ≡ -1 if the comet was outside

the great circle, and IL ≡ +1 if it was inside the great circle. The correlation results are

τ(x, IL) = 0.151, τ(q, IL) = 0.129 and τ(Sgn(Ḣ), IL) = −0.280. With a standard deviation of 0.0752,

the respective one-sided p-values are p = 0.023, 0.043, and 0.0001 respectively. Therefore we conclude

that the results indicate that there is significant evidence, both marginal and strong, that these

characteristic signatures of the galactic tide are more strongly associated with comets inside the great

circle than with comets outside the great circle. All three results are consistent with the prediction of

a loss cylinder boundary that is effectively reduced by a bound perturber inside the great circle. Since

x, q and Sgn(Ḣ) are themselves associated in the standard galactic tidal model, we cannot convolve

these p-values as in the application of the Fisher method above.
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5. SUMMARY

We give strong evidence that there is a correlated set of anomalies in the distributions of orbital

elements of new Oort cloud comets. The correlations include aphelia directions, energies, perihelion

distances and signatures of the angular momentum change due to the Galaxy. Aphelia directions of

these comets form a ”great circle” on the celestial sphere. It has previously been concluded that these

anomalies are not likely to be attributable to observational uncertainties or selection effects. We have

demonstrated that a bound low-mass brown dwarf perturber could provide a dynamical basis for the

correlated observations.

Summarizing the statistical analysis, we argue that the combination of a modestly overpopulated

great circle band with comet parameters that are unambiguously correlated in a statistically significant

manner gives a sufficient basis for concluding that the present conjecture should be investigated

observationally.

A substantive problem with the present conjecture is the absence of a comparable signal in the

population of young comets having energies 100 < x < 1000. But as such, this problem may lead to

new insights into the dependence of cometary fading on perihelion distance.

In all other regards, the data appear to be consistent with a model in which a perturber of mass

≈ 3MJ , having a mean distance at perturbation of ≈ 25000 AU, helps to make these great circle comets

observable, with the assistance of the galactic tide. It is possible that radio emissions from the brown

dwarf would be distinguishable in sensitive radio telescopes such as the VLA. This object would not

have been detected in the IRAS database, but will be detectable in the next generation of planet/brown

dwarf searches, including SIRTF.

Even though the number involved is modest, ≈ 20 of 82 new comets, we remind the reader that

Oort (1950) correctly inferred the existence of the comet cloud from a comparable population.
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Fig. 7.— The semimajor axes of simultaneously observable comets, A, expressed as a ratio to that of the

perturber, a, for the special case of a circular perturber orbit. The ratio is plotted versus the angular

orientation along the great circle, expressed in orbit cycles. Phase = 0 corresponds to the present

(unknown) angular location of the perturber. The band illustrated is the region where the galactic

tidal torque and the perturber impulse act in concert to make the comet observable. For a perturber

semimajor axis of a = 25000 AU, the ratio a/A = x/40.
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Table 1: New Class I Comets: left - out of the great circle: right - in the great circle

comet q(AU) x α(◦) L(◦) B(◦) Ḣ comet q(AU) x α(◦) L(◦) B(◦) Ḣ

C/1890 F1 1.91 89 167.3 235.8 -23.7 - C/1958 R1 1.63 76 134.0 307.7 -18.8 -

C/1955 G1 4.50 82 169.0 233.3 -29.4 - C/1959 X1 1.25 69 66.4 124.3 -78.5 +

C/1941 K1 0.87 78 80.8 271.9 -35.1 + C/1898 L1 1.70 68 314.9 143.9 28.8 -

C/1973 W1 3.84 71 63.3 32.7 48.2 - C/1987 F1 3.62 59 185.8 130.4 -26.2 -

C/1972 L1 4.28 69 67.2 235.3 -39.9 + C/1976 D2 6.88 59 315.0 121.8 -44.2 +

C/1937 C1 1.73 62 354.6 214.7 -38.7 + C/1900 B1 1.33 57 264.6 305.5 42.1 +

C/1993 F1 5.90 59 214.2 330.2 -45.5 - C/1989 Y1 1.57 49 96.5 329.2 -6.6 -

C/1973 A1 2.51 49 219.9 107.3 -50.6 - C/1983 O1 3.32 48 356.1 325.3 54.7 -

C/1886 T1 0.66 46 314.4 288.7 -24.5 + C/1888 R1 1.81 48 290.0 314.9 59.2 -

C/1987 H1 5.46 46 161.5 191.2 -17.0 - C/1932 M2 2.31 45 171.7 146.9 -14.1 -

C/1912 R1 0.72 45 121.0 225.8 13.0 + C/1946 P1 1.14 44 108.2 127.2 -19.7 -

C/1954 O2 3.87 42 53.6 336.6 -18.9 + C/1954 Y1 4.08 39 232.9 314.2 -23.9 -

C/1979 M3 4.69 42 126.8 207.4 14.6 + C/1950 K1 2.57 37 269.3 138.5 -43.4 -

C/1960 M1 4.27 40 164.0 221.2 -12.3 - C/1976 U1 5.86 37 90.2 310.0 -30.8 -

C/1925 G1 1.11 40 151.7 238.7 10.9 + C/1974 F1 3.01 36 10.2 140.5 22.1 -

C/1990 M1 2.68 40 164.5 172.0 -48.4 - C/1948 T1 3.26 34 307.4 324.5 17.4 -

C/1925 F1 4.18 35 327.1 66.4 -41.2 + C/1903 M1 0.33 33 92.8 320.7 -34.5 -

C/1948 E1 2.11 34 83.9 250.1 -38.3 + C/1978 A1 5.61 33 167.3 142.9 -31.0 -

C/1987 W3 3.33 29 63.2 334.5 64.1 - C/1993 K1 4.85 33 346.9 131.2 2.6 -

C/1913 Y1 1.10 29 238.4 282.6 -52.5 - C/1989 X1 0.35 32 218.5 325.6 -41.4 -

C/1947 Y1 1.50 28 37.3 245.1 -49.1 + C/1992 J1 3.01 28 0.9 316.8 -44.2 +

C/1906 E1 3.34 28 133.6 38.1 -44.9 - C/1978 H1 1.14 24 29.6 124.9 -20.4 +

C/1914 M1 3.75 27 101.0 201.2 -0.8 - C/1925 W1 1.57 24 140.7 323.9 -21.6 -

C/1902 R1 0.40 27 229.5 189.0 -16.9 - C/1944 K2 2.23 18 158.6 125.0 -31.5 -

C/1980 E1 3.36 27 29.8 177.3 -17.6 + C/1988 B1 5.03 13 122.8 316.1 -48.0 -

C/1902 X1 2.77 26 191.1 20.8 -31.0 - C/1974 V1 6.02 11 63.7 309.5 27.6 -

C/1907 E1 2.05 25 280.6 53.4 -20.4 + C/1946 C1 1.72 -13 277.7 312.6 -60.7 +

C/1962 C1 0.03 25 106.3 218.6 27.5 + C/1983 O2 2.25 -18 178.4 134.2 -27.6 -

C/1947 S1 0.75 24 170.2 185.8 11.5 + C/1978 G2 6.28 -23 260.2 126.9 -33.9 -

C/1975 E1 1.22 23 178.2 55.1 42.0 + C/1899 E1 0.33 -109 264.1 308.5 50.5 +

C/1922 U1 2.26 21 53.0 271.2 16.4 -

C/1984 W2 4.00 20 100.3 79.5 32.9 +

C/1973 E1 0.14 20 46.6 207.8 17.6 -

C/1935 Q1 4.04 19 115.9 248.5 12.1 +

C/1921 E1 1.01 18 143.1 219.3 -59.0 -

C/1956 F1 4.45 17 62.1 180.3 -24.8 +

C/1916 G1 1.69 17 30.5 226.4 18.4 -

C/1991 F2 1.52 16 344.4 90.0 29.6 -

C/1942 C1 1.45 16 22.1 89.8 -17.3 +

C/1978 R3 1.77 15 18.5 31.0 24.3 -

C/1853 L1 0.31 12 344.5 223.6 34.9 -

C/1896 V1 1.06 5 243.7 192.5 2.2 +

C/1993 Q1 0.97 3 173.8 112.5 41.4 +

C/1940 R2 0.37 1 88.5 42.1 -24.4 +

C/1946 U1 2.41 -1 255.3 347.7 48.4 +

C/1892 Q1 0.98 -27 105.1 72.1 -32.5 -

C/1942 C2 4.11 -34 335.0 19.2 -25.1 +

C/1932 M1 1.65 -56 76.7 250.7 -25.1 +

C/1898 V1 2.28 -71 172.4 11.0 -11.5 -

C/1991 Y1 0.64 -94 102.7 16.9 9.0 +

C/1952 W1 0.78 -125 10.2 84.9 15.6 -

C/1895 W1 0.19 -172 354.5 31.9 48.8 -


